bevictor伟德官网
院長信箱 書記信箱 English

學術科研

學術活動

當前位置: 首頁 -> 學術科研 -> 學術活動 -> 正文

【bevictor伟德官网海外學者前沿短期課程系列】第三講

閱讀次數:日期:2020-05-19

講座主題:金融經濟學中的機器學習方法

主講嘉賓:修大成,芝加哥大學布斯商學院教授

講座時間:2020年6月3日(周三),6月10日(周三),上午8:00-下午13:00(北京時間)

講座形式:騰訊會議

嘉賓簡介:修大成,芝加哥大學布斯商學院計量與統計教授。中國科學技術大學數學,理工學學士,美國普林斯頓大學應用數學碩士、博士。主要研究領域為Financial Econometrics, Empirical Asset Pricing, Machine Learning in Finance, High-Dimensional Statistics, Quantitative Finance等。研究成果發表于Journal of Econometrics,Review of Financial Studies,Journal of Finance,Annals of Statistics,Journal of Business & Economic Statistics等國際知名期刊。

内容摘要:Because machine learning can handle a large number of predictive variables and has a variety of functional forms, the application of machine learning methods in the financial field is always a concerned issue in the cademia and industry.

This paper applies a variety of representative machine learning methods to solve the most studied and classic problem in the field of empirical asset pricing: measuring the risk premium of assets. This paper focuses on comparing the different methods. It is found that using machine learning to predict can bring huge economic benefits to investors, which is better than the long-term regression analysis strategy in the literature. Among them, classification tree and neural network are the two learning methods with the best performance. Compared with other methods, they take into account the nonlinear relationship and interaction between variables and effectively improve the prediction accuracy.

上一條:【bevictor伟德官网短期課程】孟天廣
下一條:【bevictor伟德官网“龍馬經濟學雙周學術論壇”】2020年春季學期第一講:王子

版權所有:Bevictor伟德官网 - 韦德(中国)体育-伟大始于1946 學院南路校區地址:北京市海澱區學院南路39号 郵編:100081 沙河校區地址:北京市昌平區沙河高教園區 郵編:102206

Baidu
sogou